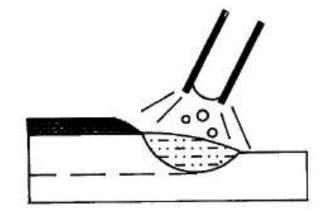


Higher Level

Question 5

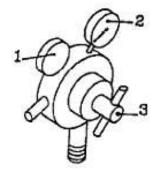

Welding

50 Marks

- (a) State two important functions of the slag produced in manual metal-arc welding.
 - (ii) State <u>two</u> precautions which should be taken in order to eliminate the hazards associated with mains operated metal-arc welding equipment.
- (b) In manual metal-arc welding explain, using suitable diagrams, the principle of operation when using:
 - (i) Alternating Current (AC);
 - (ii) Direct Current (DC).
- (c) Describe with the aid of a diagram the main features of an automatic welding process.

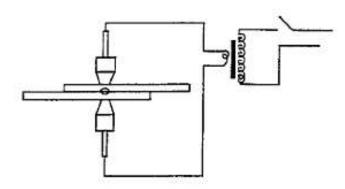
- (c) In relation to the use of robots in welding explain:
 - (i) how control of the robot is affected;
 - (ii) what is meant by degrees of freedom?

- (a) Explain a function and advantage of the following in relation to metal arc welding.
 - (i) Multi runs;
 - (ii) Shielded arc;
 - (iii) Edge preparation;
 - (iv) Slag.



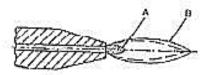
(b) Differentiate clearly between Primary and Secondary combustion in oxy-acetylene welding.

(c) Compare Metal Inert Gas welding with Tungsten Inert Gas welding.


(c) Referring to robotic control in welding, explain the following: (i) Yaw or Roll; (ii) Machine vision; (iii) Working envelope.

(a) Explain the function of each numbered item shown on the welding regulator.

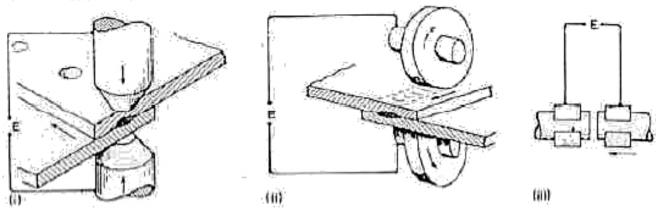
- (b) Briefly describe the following defects in manual metal arc welding and suggest a cause and a remedy in each case:
 - (i) slag inclusions;
 - (ii) porosity;
 - (iii) lack of penetration.


(e) Discuss the principles, function and applications of the welding process shown.

<u>OR</u>

- (c) (i) State four advantages of robotic control in welding and briefly describe an application suited to this type of control;
 - (ii) Explain the meaning of the "Lead through" method of robot programming.

- (a) Answer one of the following:
 - Describe the two stage combustion in the neutral oxy-acetylene flame shown at A and B;

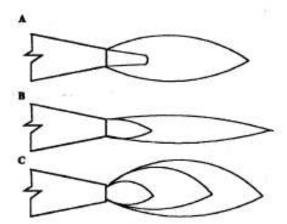


- (ii) Differentiate between a carburising and an oxidising flame.
- (b) Metal Inert Gas (MIG) welding is a common welding process. Describe the process using the following guidelines:
 - (i) Name and applications;
 - (ii) Main features and operation.
- (c) Describe any two different ways of protecting welds from atmospheric contamination.

OR

(c) In relation to robotic control of welding, describe how robots are driven.

- (a) Three forms of resistance welding are shown in the diagrams below. Select <u>one</u> and describe the process using the following guidelines:
 - Name and operation;
 - (ii) Applications.

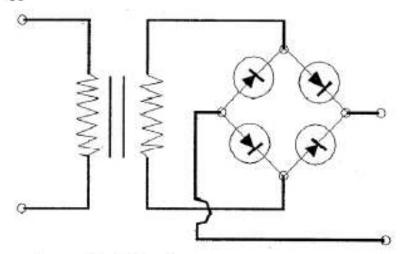


- (b) Describe the function of a (i) transformer, (ii) rectifier and (iii) capacitor in arc welding.
- (c) Describe, with the aid of a diagram, the main features of one of the following processes:
 - Electro-slag welding;
 - (ii) Submerged-arc welding.

OR

(c) Outline the advantages of using robots in industry.

- (a) Answer any two of the following.
 - (i) What is meant by dissolved acetylene?
 - (ii) Describe the three types of flame shown at (A), (B) and (C).
 - (iii) Outline an application for each flame.

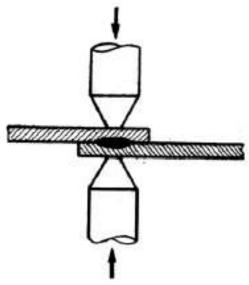


(b) Explain why it is necessary to protect the weld area from atmospheric contamination. Outline <u>three</u> main ways by which this protection is achieved.

- (c) Describe, with the aid of a diagram, the main features, operation and application of one of the following welding processes.
 - (i) Metal inert gas welding;
 - (ii) Tungsten inert gas welding.

- (c) Explain the following terms in relation to robotic control in welding.
 - Lead through method of programming.
 - (ii) Working envelope;
 - (iii) Machine vision.

- (a) Describe the circuit diagram shown using the following guidelines:
 - Component names;
 - (ii) Method of operation;
 - (iii) Applications.

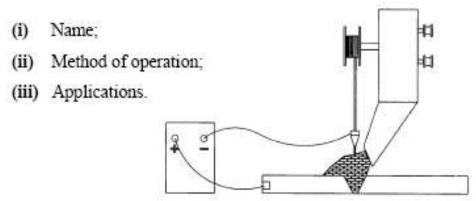

- (b) Answer any three of the following:
 - (i) State two functions of the electrode coating in manual metal arc welding;
 - (ii) Distinguish between spot welding and seam welding;
 - (iii) Outline the advantages multi-runs have over single-runs;
 - (iv) Why is it more difficult to weld aluminium than mild steel?

- (c) Describe, with the aid of a diagram, the main features of <u>one</u> of the following processes:
 - Submerged arc welding;
 - (ii) Oxyacetylene welding.

OR

(c) Outline a welding process that is most suited to robotic control and suggest an application.

- (a) Describe the welding process shown below using the following guidelines:
 - Name;
 - (ii) Method of operation;
 - (iii) Applications.

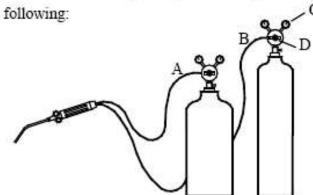

- (b) Answer any three of the following:
 - State <u>two</u> safety precautions associated with oxy-acetylene welding;
 - (ii) Outline two functions of the electrode coating in manual metal arc welding;
 - (iii) What are the benefits of multi-run welds over single-run welds?
 - (iv) Compare primary and secondary combustion in the oxy-acetylene flame.

(c) Describe, with the aid of a diagram, the main features of a transformer used in manual metal arc welding.

OR

(c) Outline two advantages of the use of robotic control in welding.

- (a) Answer any three of the following:
 - Outline two ways to protect the weld pool from atmospheric contamination during welding;
 - (ii) Distinguish between an oxidising flame and a carburising flame in oxy-acetylene welding;
 - (iii) Why is tungsten inert gas welding suitable for welding aluminium?
 - (iv) State three important safety precautions to prevent electrical hazards associated with manual metal arc welding.
- (b) Describe the welding process shown below using the following guidelines:

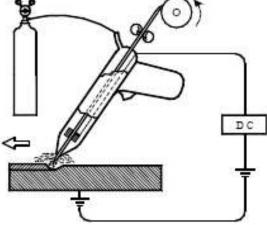


(c) Describe, with the aid of a diagram, the main features of metal inert gas welding.

OR

(c) State two important factors that should be considered when designing a robot for welding.

- (a) Describe, with the aid of a diagram, the main features of one of the following:
 - (i) Electro-slag welding;
 - Seam welding.
- (b) With reference to oxy-acetylene welding, answer any three of the

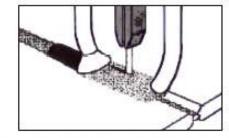


- (i) Name the colour coding used for hose A and hose B;
- (ii) Identify and explain the function of components C and D;
- State three important safety precautions to be observed when using oxy-acetylene equipment;
- (iv) What is meant by dissolved acetylene?
- (v) Distinguish between an oxidising flame and a carburising flame.

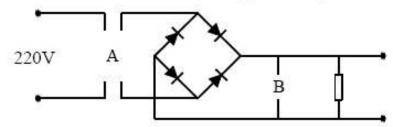
- (c) Outline the function of the following in manual metal arc welding:
 - (i) Bridge rectifier;
 - (ii) Transformer.

- (c) (i) Identify one welding process suitable for robotic control.
 - State two industrial applications for robotic controlled welding.

- (a) Describe the welding process shown using the following guidelines:
 - (i) Name;
 - (ii) Method of operation;
 - (iii) Applications.



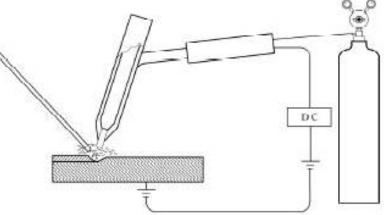
- (b) With reference to manual metal arc welding answer any three of the following:
 - (i) State two functions of the electrode coating;
 - (ii) Outline two important functions of the slag produced;
 - (iii) Explain the operation of a bridge rectifier;
 - (iv) Identify three potential safety hazards and suggest a suitable remedy for each.


- (c) Describe, with the aid of a suitable diagram, the main features of one of the following:
 - (i) Resistance spot welding;
 - (ii) Tungsten inert gas welding.

- (c) (i) Outline the benefits of using robots in car assembly.
 - (ii) In robotic control explain the meaning of the working envelope.

- (a) The diagram illustrates the process of submerged arc welding. Describe the main features of this type of welding making reference to:
 - (i) principle of operation;
 - (ii) applications.

(b) With reference to manual metal arc welding, answer any three of the following:

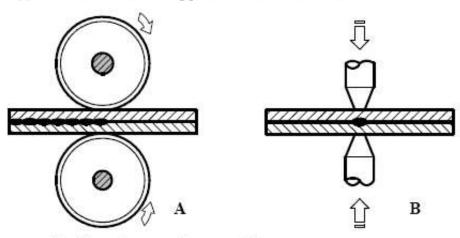


- Redraw the incomplete welding transformer circuit shown and insert the missing components for A and B;
- (ii) Describe the purpose of the components A and B;
- (iii) What are the advantages of multi-run welds?
- (iv) Outline three safety precautions associated with the preparation of materials and equipment for welding.

- (c) Describe, with the aid of a suitable diagram, the main features of one of the following:
 - Resistance seam welding;
 - (ii) Electro-slag welding.

- (c) (i) Describe two advantages of using robots in electronic circuit assembly.
 - (ii) Identify two safety factors to be considered when setting up a robotic welding facility.

- (a) Describe the welding process shown below under the following headings:
 - (i) Name;
 - (ii) Method of operation;
 - (iii) Applications.

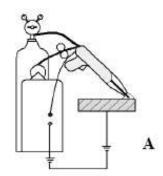


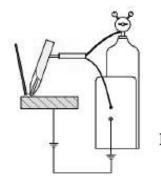
- (b) With reference to oxy-acetylene welding answer any three of the following:
 - Identify two safety features incorporated in oxy-acetylene equipment;
 - (ii) Explain the functions of part A and of part B;
 - (iii) Describe the term dissolved acetylene;
 - (iv) Distinguish clearly between oxidising and carburising flames.

- (c) Describe, with the aid of a suitable diagram, the main features of one of the following:
 - (i) Resistance spot welding;
 - (ii) Metal inert gas welding.

- (c) (i) Identify two industrial applications where robotic control is used.
 - (ii) Outline the advantages of using stepper motors in the control of robotic movement.

(a) Two resistance welding processes are illustrated at A and B below.

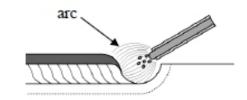



- (i) Name the two resistance welding processes.
- (ii) Describe the principles of operation for any one of these resistance welding processes.
- (b) Answer any three of the following:
 - Distinguish clearly between the applications of MIG welding and the applications of TIG welding;
 - (ii) State two functions of the electrode coating in manual metal arc welding;
 - (iii) Describe two factors to be considered when installing a welding station in a school workshop;
 - (iv) Describe multi-run welding.

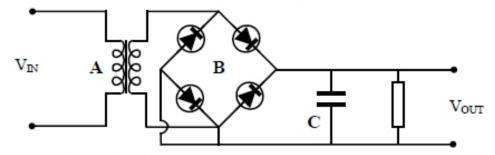
- (c) Describe, with the aid of suitable diagrams, the main features of one of the following:
 - The transformer circuit used in manual metal arc welding;
 - (ii) Submerged arc welding.

- (c) (i) Outline the advantages of using pneumatic control to power robots for heavy duty vehicle assembly.
 - (ii) Describe the benefits of using robotic control in a hazardous manufacturing environment.

(a) Two industrial welding processes are illustrated at A and B below.

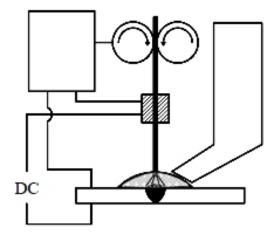

- (i) Name the two welding processes;
- (ii) Identify one application for each process;
- (iii) Describe the principles of operation for any one of these welding processes.
- (b) Answer any three of the following:
 - Describe three important safety features integrated into the equipment used for oxyacetylene welding;
 - (ii) State two functions of the slag produced in manual metal arc welding;
 - (iii) Identify one use for submerged arc welding (SAW);
 - (iv) Describe the principle of resistance welding.

- (c) Describe, with the aid of suitable diagrams, the main features of one of the following:
 - (i) Electro-slag welding;
 - Oxyacetylene welding.


- (c) Outline the advantages of using robotic control for each of the following engineering applications:
 - Spray painting vehicle body parts;
 - (ii) Testing gas pipes;
 - (iii) Placement of electronic components on circuit boards.

(a) The process of manual metal arc welding (MMA) is illustrated.

- Describe the principles of operation of MMA welding.
- (ii) Identify the three main parts A, B and C of the MMA welding circuit shown and state the function of each part.

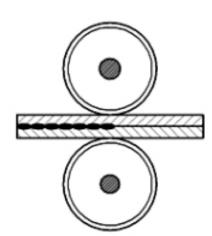

- (b) Answer any three of the following:
 - Describe three important safety features that minimise electrical hazards associated with manual metal arc welding;
 - (ii) Outline three methods of preventing atmospheric contamination of the weld area;
 - (iii) Why is tungsten inert gas welding suitable for welding aluminium?
 - (iv) Explain the function of dissolved acetylene in oxy-acetylene welding.

- (c) Describe, with the aid of a suitable diagram, the main features of one of the following:
 - Seam resistance welding;
 - Submerged arc welding (SAW).

- (c) (i) Explain the robotic control terms:
 - work envelope and
 - degree of freedom.
 - (ii) Outline one advantage of the use of stepper motors rather than DC motors in robotic control.

- (a) The process of submerged arc welding (SAW) is illustrated.
 - Describe the principles of operation of submerged arc welding (SAW).
 - (ii) Identify one application of SAW.

- (b) Answer any three of the following:
 - Describe, with examples, the importance of colour coding in oxyacetylene equipment;
 - Outline three safety precautions that should be observed in the preparation of equipment and materials for oxyacetylene welding;
 - (iii) Describe multi-run welds;
 - (iv) Describe one type of welding suitable for the automated welding of steel panels in motorcar manufacture.


- (c) Describe, with the aid of suitable diagrams, the main features of one of the following:
 - (i) Tungsten Inert Gas (TIG) welding;
 - (ii) Manual metal arc (MMA) welding.

- (c) Resistance spot welding is extensively used in robot controlled engineering manufacture.
 - Explain why resistance spot welding is suitable for robotic control.
 - (ii) Identify two other industrial processes where robotic control is widely used.

- (a) Answer any three of the following:
 - Describe three hazards associated with the use of manual metal arc welding in a school engineering room.
 - (ii) Outline the functions of the transformer, capacitor and rectifier in manual metal arc welding.
 - (iii) State two functions of the electrode coating in manual metal arc welding.
 - (iv) State specific uses for each of the following welding processes:
 - · Tungsten inert gas (TIG) welding
 - Submerged arc welding (SAW)
 - Oxy-acetylene welding.

- (b) A resistance welding process is illustrated.
 - Name this resistance welding process.
 - (ii) Identify one application for this process.
 - (iii) Describe in detail, the key principles of resistance welding.

- (c) Describe, with the aid of suitable diagrams, the main features of one of the following:
 - (i) Metal inert gas (MIG) welding;
 - (ii) Electro-slag welding.

- (c) The use of robotic welding has increased steadily over the past 25 years and now accounts for approximately 20% of all industrial robotic applications.
 - Name two types of welding suitable for robotic control.
 - (ii) Identify two other industrial processes that can be controlled by robotic techniques.

